AQA Combined Science & Physics.

U	nit	6:	W	'av	es
-		<u> </u>			

Тур	es of forces				
1	Transverse wave	moves in a direction at right angles to the way in			
		which the particles are vibrating			
2	longitudinal wave	moves in the san	ne direction as the	vibrating	
		particles, made u	up of rarefraction a	nd	
		compression			
3	rarefaction	area of reduced pressure			
4	compression	area of increased pressure			
5	amplitude	the maximum di	splacement of a po	int of a wave	
		from its undistur	rom its undisturbed position		
6	wavelength	distance from a	point on one wave	to the	
equivalent point on the adjacent w			ave		
7	frequency	the number of w	waves passing a point each second		
8	Time period	time taken for a	full cycle of the wave		
	Equation	Symbol	Units		
9	Period = <u>. 1 .</u>	T = 1/f	Period	Seconds (s)	
	Frequency		_		
			Frequency	Hertz (Hz)	
10	Wave speed =	$v = f \lambda$	Wave speed	metres per	
	frequency x			second (m/s)	
	wavelength		Frequency	Hertz (Hz)	
			Wavelength	Metres (m)	

RP – Measuring waves in a ripple tank			
11	Aim	to calculate frequency, wavelength and the speed of wave in a ripple tank	
12	Method	 a. set up ripple tank and switch on b. switch on lamp and motor and adjust frequency to show wave c. measure the length of a number of waves then divide by the number to record wavelength. d. count number of waves passing a point in ten seconds, divide by ten to record frequency e. wave speed = frequency × wavelength 	

RP – Measuring waves in a solid			
13	Aim	to calculate frequency, wavelength and the speed of a string	
14	Method	 a. attach string to vibration generator and use a hanging mass and pulley with a bridge under the string to pull taut b. switch generator and adjust the wooden bridge until stationary waves can be observed c. measure the length of several half wavelengths , divide by the number of half wavelengths and then double to find wavelength d. frequency is the frequency of the power supply e. wave speed = frequency × wavelength 	

Electromagnetic waves				
15	electromagne	etic wave	type of transverse wave	
16	Frequency Wavelength		Radiation Type	Typical use
	low	\wedge	Radio waves	Television signals
		long	Microwaves	Cooking, mobile phones
			Infrared	Optical fibre communication
			Visible light	Seeing
			Ultraviolet	Detecting forged bank notes
			X-rays	Medical images of bones
	↓ High	l short	Gamma radiation	Killing cancer cells
17	Ionising EM waves		Ultra-violet, x- rays and gamma rays	

RP – to measure infrared radiation emitted by different surfaces			
18	Method	 a. fill Leslie cube with boiling water, leave for one minute b. use infrared detector to measure infrared radiation emitted from each surface 	
19	control	detector must be the same distance from each surface	